94 research outputs found

    Photometric stereo and appearance capture

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Temporal higher-order interactions facilitate the evolution of cooperation

    Full text link
    Motivated by the vital progress of modeling higher-order interactions by hypernetworks, where a link connects more than two individuals, we study the evolution of cooperation on temporal hypernetworks. We find that temporal hypernetworks may promote cooperation compared with their static counterparts. Our results offer new insights into the impact of network temporality in higher-order interactions on understanding the evolution of cooperation, suggesting traditional networks based on pairwise or static interactions may underestimate the potential of local interactions to foster cooperation.Comment: 6 pages, 4 figure

    New Design of PI Regulator Circuit Based on Three-Terminal Memristors

    Get PDF

    Say What You Are Looking At: An Attention-Based Interactive System for Autistic Children

    Get PDF
    Gaze-following is an effective way for intention understanding in human–robot interaction, which aims to follow the gaze of humans to estimate what object is being observed. Most of the existing methods require people and objects to appear in the same image. Due to the limitation in the view of the camera, these methods are not applicable in practice. To address this problem, we propose a method of gaze following that utilizes a geometric map for better estimation. With the help of the map, this method is competitive for cross-frame estimation. On the basis of this method, we propose a novel gaze-based image caption system, which has been studied for the first time. Our experiments demonstrate that the system follows the gaze and describes objects accurately. We believe that this system is competent for autistic children’s rehabilitation training, pension service robots, and other applications.</jats:p

    Spatially resolved Spectro-photometry of M81: Age, Metallicity and Reddening Maps

    Full text link
    In this paper, we present a multi-color photometric study of the nearby spiral galaxy M81, using images obtained with the Beijing Astronomical Observatory 60/90 cm Schmidt Telescope in 13 intermediate-band filters from 3800 to 10000{\AA}. The observations cover the whole area of M81 with a total integration of 51 hours from February 1995 to February 1997. This provides a multi-color map of M81 in pixels of 1\arcsec.7 \times 1\arcsec.7. Using theoretical stellar population synthesis models, we demonstrate that some BATC colors and color indices can be used to disentangle the age and metallicity effect. We compare in detail the observed properties of M81 with the predictions from population synthesis models and quantify the relative chemical abundance, age and reddening distributions for different components of M81. We find that the metallicity of M81 is about Z=0.03Z=0.03 with no significant difference over the whole galaxy. In contrast, an age gradient is found between stellar populations of the central regions and of the bulge and disk regions of M81: the stellar population in its central regions is older than 8 Gyr while the disk stars are considerably younger, 2\sim 2 Gyr. We also give the reddening distribution in M81. Some dust lanes are found in the galaxy bulge region and the reddening in the outer disk is higher than that in the central regions.Comment: Accepted for publication in AJ (May 2000 issue). 27 pages including 6 figures. Uses AASTeX aasms4 styl
    corecore